Abstract

Recovery of sparse signals from compressed measurements constitutes an l0 norm minimization problem, which is unpractical to solve. A number of sparse recovery approaches have appeared in the literature, including l1 minimization techniques, greedy pursuit algorithms, Bayesian methods and nonconvex optimization techniques among others. This manuscript introduces a novel two stage greedy approach, called the Forward-Backward Pursuit (FBP). FBP is an iterative approach where each iteration consists of consecutive forward and backward stages. The forward step first expands the support estimate by the forward step size, while the following backward step shrinks it by the backward step size. The forward step size is larger than the backward step size, hence the initially empty support estimate is expanded at the end of each iteration. Forward and backward steps are iterated until the residual power of the observation vector falls below a threshold. This structure of FBP does not necessitate the sparsity level to be known a priori in contrast to the Subspace Pursuit or Compressive Sampling Matching Pursuit algorithms. FBP recovery performance is demonstrated via simulations including recovery of random sparse signals with different nonzero coefficient distributions in noisy and noise-free scenarios in addition to the recovery of a sparse image.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.