Abstract

The future Electron-Ion Collider (EIC) will utilize a series of high-luminosity high-energy electron+proton ($e+p$) and electron+nucleus ($e+A$) collisions to explore the inner structure of nucleon and nucleus and the matter formation process. Heavy flavor hadron and jet measurements at the EIC will play an essential role in determining the nucleon/nucleus parton distribution function and heavy quark hadronization process in not well constrained kinematic regions. A high granularity and low material budget forward silicon tracker will enable precise forward heavy flavor measurements at the EIC, which have enhanced sensitivities to access these kinematic extremes. A Forward Silicon Tracker (FST) detector is under design and R$\&$D for the EIC. Two advanced silicon technologies, the Depleted Monolithic Active Pixel Sensor (DMAPS) and the AC coupled Low Gain Avalanche Diode (AC-LGAD), which can provide fine spatial and timing resolutions, have been considered as candidates for the EIC silicon tracking detector. Progresses and results about the FST conceptual design and ongoing DMAPS and LGAD detector R$\&$D will be presented. The path towards an integrated EIC detector will be discussed as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call