Abstract

Metal-organic frameworks (MOFs) can be applied to enhance the property of forward osmosis membranes. However, organic solvents can easily remain in organic synthetic metal-organic frame materials and cause membrane fouling and a decrease in membrane permeability. In this study, water-based Zr-fumarate MOFs were synthesized and doped into the membrane active layer by interfacial polymerization to provide a water-based MOF-doped thin-film composite membrane (TFC membrane). It was found that doping the water-based MOFs effectively improved membrane hydrophilicity, and nanowater passages were introduced in the active layer to improve permeability. The water flux of the water-based MOF-doped TFC membranes was increased by 21% over that of the original membrane, and the selectivity performance of the membrane was improved while keeping the salt rejection basically unchanged. Additionally, the water-based MOF-doped TFC membrane showed good removal efficiency (Rd > 94%) and strong antipollution performance in the treatment of dye pollutants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call