Abstract
African trypanosomes are flagellated protozoan parasites transmitted by the bite of tsetse flies and responsible for sleeping sickness in humans. Their complex development in the tsetse digestive tract requires several differentiation and migration steps that are thought to rely on trypanosome motility. We used a functional approach in vivo to demonstrate that motility impairment prevents trypanosomes from developing in their vector. Deletion of the outer dynein arm component DNAI1 results in strong motility defects but cells remain viable in culture. However, although these mutant trypanosomes could infect the tsetse fly midgut, they were neither able to reach the foregut nor able to differentiate into the next stage, thus failing to complete their parasite cycle. This is the first in vivo demonstration that trypanosome motility is essential for the accomplishment of the parasite cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.