Abstract
We propose a forward-backward splitting algorithm based on Bregman distances for composite minimization problems in general reflexive Banach spaces. The convergence is established using the notion of variable quasi-Bregman monotone sequences. Various examples are discussed, including some in Euclidean spaces, where new algorithms are obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.