Abstract

The paper proposes a framework for unification of the penalized least-squares optimization (PLSO) and forward-backward filtering scheme. It provides a mathematical proof that forward-backward filtering (zero-phase IIR filters) can be presented as instances of PLSO. On the basis of this result, the paper then represents a unifying approach to the design and implementation of forward-backward filtering and PLSO algorithms in the time and frequency domain. A new block-wise matrix formulation is also presented for implementing the PLSO and forward-backward filtering algorithms. The approach presented in this paper is particularly suited for understanding the task of zero-phase filters in the time domain and analyzing PLSO algorithms in the frequency domain. In this paper, we show that the task of a zero-phase digital Butterworth filter in the time domain is to fit the signal with impulse train and penalties on the derivatives of the fitted model. For a zero-phase digital Chebyshev filter, a linear combination of derivatives of the model is used in the penalty term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.