Abstract
With an increasing influx of classical signal processing methodologies into the field of graph signal processing, approaches grounded in discrete linear canonical transform have found application in graph signals. In this paper, we initially propose the uncertainty principle of the graph linear canonical transform (GLCT), which is based on a class of graph signals maximally concentrated in both vertex and graph spectral domains. Subsequently, leveraging the uncertainty principle, we establish conditions for recovering bandlimited signals of the GLCT from a subset of samples, thereby formulating the sampling theory for the GLCT. We elucidate interesting connections between the uncertainty principle and sampling. Further, by employing sampling set selection and experimental design sampling strategies, we introduce optimal sampling operators in the GLCT domain. Finally, we evaluate the performance of our methods through simulations and numerical experiments across applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.