Abstract

We show that the Ritz–Rayleigh method can be used for calculation of velocity of surface acoustic waves (SAWs) propagating in a general direction of an anisotropic medium of arbitrary symmetry class. The main advantage of this method is that expanding the displacement field of SAW into a fixed functional basis transforms the calculation of SAW velocities into a simple linear eigenvalue problem. The correctness and reliability of the proposed approach are verified on experimental SAW data obtained for generally oriented planes of an indium phosphide single crystal. The same experimental datasets are then used to discuss the invertibility of the method, i.e. the possibility of determination of elastic coefficients from SAW measurements in general directions. It is shown that the SAW data obtained on a single generally oriented plane are sufficient for such an inverse calculation for a cubic material only if they are complemented by measurements of velocities of bulk quasi-longitudinal (qL) waves propagating along the same free surface. Moreover, when the SAW and qL data are available from three almost perpendicular faces of a single specimen, the complete elastic tensor (21 independent constants) can be inversely determined, without considering a priori any symmetry constraints to the material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call