Abstract

Th e main goal of this paper is to derive the forward and inverse kinematic model of the ABB IRB 140 industrial manipulator. Denavit-Hartenberg analysis (DH) is presented to write the forward kinematic equations. Initially, a coordinate system is attached to each of the six links of the manipulator. Then, the corresponding four link parameters are determined for each link to construct the six transformation matrices ( that define each frame relative to the previous one. While, to develop the kinematics that calculates the required joint angles ( both geometrical and analytical approaches are used to solve the inverse kinematic problem. After introducing the forward and inverse kinematic models, a MATLAB code is written to obtain the solutions of these models. Then, the forward kinematics is validated by examining a set of known positions of the robot arm, while the inverse kinematics is checked by comparing the results obtained in MATLAB with a simulation in Robot Studio.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call