Abstract

A study was carried out in calcareous soil (low in ABDTPA extractable phosphorus and zinc) to evaluate the effect of zinc fortified locally developed single super phosphate fertilizers on maize grown in summer 2016. Zinc fortified fertilizers were prepared in laboratory of soil science department, University of Agriculture Peshawar, Pakistan. Treatments consisted of mixing two levels of zinc 5 and 10 kg ha-1 with SSP during its formulation by three methods of fortification coating, blending and reaction along with separate application and no application of zinc or a control treatment. Results showed the two levels of zinc mixed by different methods with SSP significantly influenced various appraised parameters of maize crop variety. With varying zinc level and fortification methods thousand grain weights, biomass yield and zinc concentration in leaves and grain were influenced significantly. Zinc at the rate of 10 kg ha-1 fortified with SSP through coating method produced maximum yield and yield components. Zn concentrations were higher in grains than leaves. It was concluded form the study that zinc (at the rate of 10 kg ha-1) mixed with phosphate fertilizer by coating produced highest maize grain yield and this method can be recommended for calcareous soil conditions of Peshawar.

Highlights

  • Zinc is one of the essential micronutrients required for better growth and higher grain yields of crops

  • Grain Yield Zinc mixing methods with single super phosphate and two levels causeda prominent variation in terms of grain yield of maize when the treatments were compared with one another and with control

  • Maximum grain yield (4.88 t ha-1); was obtained from treatment of 10 kg ha-1 zinc fortified with SSP through coating methodand lower grain yield (3.24 t ha-1) was obtained from check plots where zinc was not applied

Read more

Summary

Introduction

Zinc is one of the essential micronutrients required for better growth and higher grain yields of crops. Crops require 15–20 mg kg−1 of Zn on dry weight basis for completion of various physiological and metabolic processes. Zinc is involved in synthesis of protein, metabolism of carbohydrate and nitrogen, auxin production, protein synthesis and quality, stability of genetic material, photosynthesis and chlorophyll synthesis, carbon anhydrase activity; resistance to abiotic and biotic stresses and protection against oxidative damages[5,6].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.