Abstract

The limited supply of cartilage tissue with appropriate sizes and shapes needed for reconstruction and repair has stimulated research in the area of hydrogels as scaffolds for cartilage tissue engineering. In this study we demonstrate that poly(ethylene glycol) (PEG)-based semi-interpenetrating (sIPN) network hydrogels, made with a crosslinkable poly(ethylene glycol)-dimethacrylate (PEGDM) component and a non-crosslinkable interpenetration poly(ethylene oxide) (PEO) component, and seeded with chondrocytes support cartilage construct growth having nominal thicknesses of 6 mm and relatively uniform safranin-O stained matrix when cultured statically, unlike constructs grown with prefabricated macroporous scaffolds. Even though changing the molecular weight of the PEO from 100 to 20 kDa reduces the viscosity of the precursor polymer solution, we have demonstrated that it does not appear to affect the histological or biochemical characteristics of cartilaginous constructs. Extracellular matrix (ECM) accumulation and the spatial uniformity of the ECM deposited by the embedded chondrocytes decreased, and hydrogel compressive properties increased, as the ratio of the PEGDM:PEO in the hydrogel formulation increased (from 30:70 to 100:0 PEGDM:PEO). Total collagen and glycosaminoglycan contents per dry weight were highest using the 30:70 PEGDM:PEO formulation (24.4+/-3.5% and 7.1+/-0.9%, respectively). The highest equilibrium compressive modulus was obtained using the 100:0 PEGDM:PEO formulation (0.32+/-0.07 MPa), which is similar to the compressive modulus of native articular cartilage. These results suggest that the versatility of PEG-based sIPN hydrogels makes them an attractive scaffold for tissue engineering of cartilage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call