Abstract

We report a simple method for converting solid matrices into useful matrix solutions for matrix-assisted laser desorption/ionization (MALDI). This method is based on the dissolution of the solid matrix in a liquid support of low volatility such as glycerol. An appropriate solubilizing reagent was added to promote the dissolution of the matrix materials into the liquid support. Selection of the solubilizing reagent is empirically related to an acid-base relationship, i.e., an acidic solid matrix requires a basic organic compound to form a stable matrix solution in the liquid support and vice versa. A tenfold increase in the solubility can be obtained for many solid matrices when appropriate solubilizing reagents are added into the glycerol support. This solubility enhancement is tentatively attributed to the ion-pair formation in a polar nonvolatile liquid support. In addition, the hydrophobicity of the solid matrix seems to play an important role in the efficiency of the resulting matrix solution. By using glycerol as liquid support, a hydrophilic matrix, such as 2,5-dihydroxybenzoic acid (DHB), showed a substantial “peripheral effect,” in which good analyte ion signals could only be recorded at the peripheral region of the sample droplet. More hydrophobic matrices, such as α-cyano-4-hydroxycinnamic acid (α-CCA), exhibit better and more homogeneous responses at different regions of the droplets. The performance of these matrix solutions was evaluated in terms of the durability, reproducibility, sensitivity, high mass capability, and generality. A typical sample droplet can afford more than an hour of repeated sampling with excellent shot-to-shot reproducibility. A low picomole sensitivity was demonstrated using a luteinizing hormone releasing hormone (LHRH) in a Fourier transform ion cyclotron resonance mass spectrometer with a homemade external MALDI ion source. By using a commercial MALDI time-of-flight mass spectrometer, proteins with masses as high as 66,000 Da were successfully analyzed by using these matrix solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.