Abstract

In this paper, a new numerical scheme is proposed for multidelay fractional order optimal control problems where its derivative is considered in the Grunwald–Letnikov sense. We develop generalized Euler–Lagrange equations that results from multidelay fractional optimal control problems (FOCP) with final terminal. These equations are created by using the calculus of variations and the formula for fractional integration by parts. The derived equations are then reduced into system of algebraic equations by using a Grunwald–Letnikov approximation for the fractional derivatives. Finally, for confirming the accuracy of the proposed approach, some illustrative numerical examples are solved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call