Abstract

This paper presents a general formulation and a general numerical scheme for a class of Fractional Optimal Control Problems (FOCPs). The fractional derivative is described in the Caputo sense. The performance index of a FOCP is considered as a function of both the state and the control variables, and the dynamic constraints are expressed by a set of Fractional Differential Equations (FDEs). The Calculus of Variations, the Lagrange multiplier, and the formula for fractional integration by parts are used to obtain Euler-Lagrange equations for the FOCP. The formulation presented and the resulting equations are very similar to those that appear in the classical optimal control theory. Thus, the present formulation essentially extends the classical control theory to fractional dynamic systems. The formulation is used to derive the control equations for a quadratic linear fractional control problem. An iterative numerical scheme is presented to find the approximate numerical solution of the resulting equations. For a linear system, this method results into a set of linear simultaneous equations, which can be solved directly. Numerical results for a FOCP are presented to demonstrate the feasibility of the method. It is shown that the solutions converge as the number of grid points increases, and the solutions approach to classical solutions as the order of the fractional derivatives approach to 1. The formulation presented is simple and can be extended to other FOCPs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.