Abstract

ObjectivesThe objective of this study was to synthesize arginine loaded mesoporous silica nanoparticles (Arg@MSNs), develop a novel orthodontic adhesive using Arg@MSNs as modifiers, and investigate the adhesive performance, antibacterial activity, and biocompatibility. MethodsArg@MSNs were synthesized by immobilizing arginine into MSNs and characterized using transmission electron microscope (TEM), dynamic light scattering (DLS), and Fourier Transform Infrared Spectrometer (FT-IR). Arg@MSNs were incorporated into Transbond XT adhesive with different mass fraction to form functional adhesives. The degree of conversion (DC), arginine release behavior, adhesive performance, antibacterial activity against Streptococcus mutans biofilm, and cytotoxicity were comprehensively evaluated. ResultsTEM, DLS, and FT-IR characterizations confirmed the successful preparation of Arg@MSNs. The incorporation of Arg@MSNs did not significantly affect DC and exhibited clinically acceptable bonding strength. Compared to the commercial control, the Arg@MSNs modified adhesives greatly suppressed the metabolic activity and polysaccharide production while increased the biofilm pH values. The cell counting kit (CCK)-8 test indicated no cytotoxicity. ConclusionsThe novel orthodontic adhesive containing Arg@MSNs exhibited significantly enhanced antibacterial activities and inhibitory effects on acid production compared to the commercial adhesive without compromising their bonding strength or biocompatibility. Clinical significanceThe novel orthodontic adhesive containing Arg@MSNs exhibits potential clinical benefits in preventing demineralization of enamel surfaces around or beneath orthodontic brackets due to its enhanced antibacterial activities and acid-producing inhibitory effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call