Abstract
In this research work, nanocrystals (NC) of poorly water-soluble drug genistein (Gen) were formulated to improve its aqueous solubility and bioavailability. Genistein nanocrystals (Gen–NC) were prepared by wet ball milling. The formulation was optimized using Box Behnken Design Expert to evaluate the impact of stabilizer concentration, drug concentration and quantity of zirconium beads (milling media) on NC size, polydispersity and zeta potential. The NCs were surface-decorated with transferrin (Tf) to form Tf modified Gen-NCs (Tf-Gen-NC) for improving cancer cell selectivity and cytotoxicity. The NC formulations were characterized by dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray power diffraction (XRD) and differential scanning calorimetry (DSC). The particle size distribution of the optimized formulation varied from 200 to 300 nm with poly dispersibility index (PDI) between 0.1 and 0.3. Tf-Gen-NC and Gen-NC released 96 % and 80 % of the drug content in 20 min at 37 °C, respectively, whereas only 18 % were released with the unprocessed drug. In vitro cytotoxicity was tested in pulmonary adenocarcinoma epithelial cells (A549) and fibroblast cell line (L929). The Tf-Gen-NC presented an enhanced anticancer effect. In vivo pharmacokinetic studies in mice after intraperitoneal administration showed that the Cmax of NC formulations were 2.5-fold higher compared to free Gen. The area under the curve from time of administration to 24 h was 2.5 to 3-fold higher when compared with unprocessed drug. This study shows the interest of Gen-NC in the development of new formulations for Gen as an anticancer drug.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.