Abstract

The solvent evaporation method with premix membrane homogenization was applied, with class-3 ethyl acetate as organic solvent, to produce narrowly size-distributed rifampicin (RIF)-loaded poly(lactide-co-glycolide) (PLGA) microspheres for sustained lung delivery as aerosol. Microsphere formulations (simple or multiple emulsions, different PLGA and RIF concentrations) and process parameters (transmembrane pressure, SPG membrane pore diameter) were investigated as their effects on RIF content, microsphere size, aerodynamic properties of the freeze-dried powder and in vitro release profiles. Narrowly size distributed microspheres with diameters from 2 to 8 μm, satisfactory RIF contents (from 4.9 to 16.5%), 80% RIF release from 12 h to 4 days, and adequate aerodynamic properties were prepared from a multiple emulsion and using SPG membrane pore diameter of 19.9 μm. The premix membrane homogenization appeared to be a rapid and efficient method to prepare monodisperse drug-loaded microspheres suitable for lung delivery as sustained-release microsphere aerosol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.