Abstract

Objective: The purpose of present study aims to design novel drug delivery system containing oxiconazole nitrate microsponges and to prepare microsponge gel. Oxiconazole nitrate is an antifungal drug used in the treatment of fungal infection having a poor aqueous solubility, side effects and adverse reactions. The microsponge delivery system is unique technology for controlled release of active agents. Methods: The microsponges were prepared by quasi-emulsion solvent diffusion method by using polymer eudragit S-100 and eudragit L-100. All the formulated microsponges were subjected for various evaluation parameters such as production yield, encapsulation efficiency, particle size analysis and in vitro drug release study. The optimised microsponge formulation F3 and F9 were further formulated as gel formulation for topical delivery. Prepared gel was evaluated for physical parameters like pH, spreadability, viscosity, drug content and in vitro diffusion study and compared with the marketed formulation.Results: The Fourier transform infrared radiation measurement (FTIR) and Differential scanning colorimetry (DSC) of drug and excipient confirm compatibility. Results revealed that quasi-emulsion solvent diffusion method is a suitable technique for the preparation of microsponges as most of the formulations were discrete and spherical in shape with a good production yield of 61.44% to 80.45% and The highest drug release for F3 and F9 formulation was found to be 87.77 % and 83.24 % respectively for the 8 h. The microsponge gel formulation MGI (F3) showed the controlled release of oxiconazole nitrate for 12 h. The drug release data of optimised batch MGI (F3) were fitted into different kinetic models and showed that the drug release from gel formulation follows zero order release.Conclusion: As compared to conventional formulation, the prepared microsponge gel are expected to remain on the skin for a longer time, gradually releasing their contents over the time. Hence, oxiconazole nitrate microsponges and microsponge gel prepared in this study are promising as being more useful than conventional formulation therapy.

Highlights

  • The novel drug delivery systems have been increasingly investigated to achieve targeted and controlled release of drugs as many of conventional delivery systems require high concentrations of active agents to be incorporated for effective therapy because of their low efficiency as delivery systems

  • The microsponges containing oxiconazole nitrate were prepared by a quasi-emulsion solvent diffusion method using eudragit S-100, eudragit L-100 as a polymer

  • This study concluded that microsponges prepared with eudragit S-100 and eudragit L-100 in the 1:10 (F3) were more efficient to give extended drug release which released the 87.77% and 83.24% drug at the end of 8 h

Read more

Summary

Introduction

The novel drug delivery systems have been increasingly investigated to achieve targeted and controlled release of drugs as many of conventional delivery systems require high concentrations of active agents to be incorporated for effective therapy because of their low efficiency as delivery systems. Microsponges are highly cross-linked, patented, porous, polymeric microspheres that acquire the flexibility to entrap a wide variety of active ingredients that are mostly used for prolonged topical administration and recently for oral administration. The microsponge system can prevent excessive accumulation of ingredients within the epidermis and the dermis. These products are typically presented to the consumer in conventional forms like creams, gels or lotions and they contain relatively high concentration of active ingredients. Microsponges are polymeric delivery systems consisting of porous microspheres that can entrap a wide range of active ingredients such as emollients, fragrances, essential oils, sunscreens, and anti-infective, anti-fungal, and anti-inflammatory agents [4]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.