Abstract

It is well-known that the PRP conjugate gradient method with exact line search is globally and linearly convergent. If a restart strategy is used, the convergence rate of the method can be an n -step superlinear/quadratic convergence. Recently, Zhang et al. [L. Zhang, W. Zhou, D.H. Li, A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence, IMA J. Numer. Anal. 26 (2006) 629–640] developed a modified PRP (MPRP) method that is globally convergent if an inexact line search is used. In this paper, we investigate the convergence rate of the MPRP method with inexact line search. We first show that the MPRP method with Armijo line search or Wolfe line search is linearly convergent. We then show that the MPRP method with a restart strategy still retains n -step superlinear/quadratic convergence if the initial steplength is appropriately chosen. We also do some numerical experiments. The results show that the restart MPRP method does converge quadratically. Moreover, it is more efficient than the non-restart method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.