Abstract

This paper investigates the H∞ master–slave synchronization problem for delayed impulsive implicit hybrid neural networks based on memory-state feedback control. By developing a more holistic stochastic impulse-time-dependent Lyapunov–Krasovskii functional and dealing with the nonlinear neuron activation function, the stochastic admissibility and prescribed H∞ performance index for the synchronization error closed-loop system are achieved. In addition, the desired mode-dependent memory-state feedback synchronization controller is acquired in the form of linear matrix inequalities. The free-weighting matrix technique is adopted to remove the inherent limitation of time-varying delay derivative for the implicit delayed systems, and the derivative of time-varying delay is relaxed enough to be greater than 1. The simulation of genetic regulatory network in bio-economic system is given to verify validity of the derived results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.