Abstract

Optical nonlinear activation function is an indispensable part of the optical neural network. While linear matrix computation has thrived in an integrated optical neural network, there are many challenges for nonlinear activation function on a chip such as large latency, high power consumption and high threshold. Here, we demonstrate that Ge/Si hybrid structure would be a qualified candidate owing to its property of CMOS-compatibility, low nonlinear threshold and compact footprint. Thanks to the strong thermal-optic effect of germanium in conjunction with micro-ring resonator, we experimentally demonstrate three different types of nonlinear function (Radial basis, Relu and ELU functions) with a lowest threshold of 0.74 mW among our measured nonlinear functions and they can work well with a repetition rate below 100 kHz. Simultaneous size shrinkage of germanium and resonance constraint inside germanium is proposed to speed up response time. Furthermore, we apply our measured nonlinear activation function to the task of classification of MNIST handwritten digit image dataset and improve the test accuracy from 91.8% to 94.8% with feedforward full-connected neural network containing three hidden layers. It proves that our scheme has potential in the future optical neural network.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.