Abstract

We consider high order phase field functionals introduced in Borden et al. (2014) and provide a rigorous proof that these functionals converge to a sharp crack brittle fracture energy. We take into account three dimensional problems in linear elastic fracture mechanics and functionals defined both in Sobolev spaces and in spaces of tensor product B-splines. In the latter convergence holds when the mesh size vanishes faster than the internal length of the phase-field model. On the theoretical level, this condition is natural since the size of the phase field layer, around the crack, itself scales like the internal length; on the numerical level, it should be satisfied by local h-refinement.Technically, convergence holds in the sense of Γ-convergence, with respect to the strong topology of L1, while the sharp crack energy is defined in GSBD2. The constraint on the phase field to take values in [0,1] is taken into account both in the Sobolev setting and in the iso-geometric setting; in the latter, it requires a special treatment since the projection operator on the space of tensor product B-splines is not Lagrangian (i.e., interpolatory).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.