Abstract

The emergent interpersonal syndrome (EIS) approach conceptualizes personality disorders as the interaction among their constituent traits to predict important criterion variables. We detail the difficulties we have experienced finding such interactive predictors in our empirical work on psychopathy, even when using uncorrelated traits that maximize power. Rather than explaining a large absolute proportion of variance in interpersonal outcomes, EIS interactions might explain small amounts of variance relative to the main effects of each trait. Indeed, these interactions may necessitate samples of almost 1,000 observations for 80% power and a false positive rate of .05. EIS models must describe which specific traits' interactions constitute a particular EIS, as effect sizes appear to diminish as higher-order trait interactions are analyzed. Considering whether EIS interactions are ordinal with non-crossing slopes or disordinal with crossing slopes, or entail nonlinear threshold or saturation effects may help researchers design studies, sampling strategies, and analyses to model their expected effects efficiently.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.