Abstract

High-performance metal/polymer/metal hybrid sandwich composites are attractive materials for lightweight constructions in automotive, aerospace and naval engineering world-wide. Due to the excellent combination of mechanical, thermal and elastic properties and, as a result of high forming potential, they can be used in areas of high vibration, where high damping properties of the polymer are demanded and at the same time high strength and stiffness are given by the metal. Disadvantages can be given in case of mechanical or thermal joining of these polymer-based sandwiches because of the elastic behaviour as well as low melting temperature of the polymer. Local metal plate insertions in the soft core at the place of joining can be a solution for such kind of problems. But forming behaviour of sandwich materials with and without local inlays differs strongly. Sandwich composites of that type were produced by roll-bonding. Their quality and their position were controlled by Lockin thermography. The forming behaviour of sandwiches with different geometry, size, type and the position of the inlays was tested by deep drawing and bending and analysed with the help of digital photogrammetry and compared to experimentally obtained mechanical properties. As a result, the local inlays, as well as their geometry, size and type strongly influence the forming limit conditions. The differences in flow behaviour of non-reinforced and reinforced sandwich regions after deep drawing and bending will be presented, as well as the influence of the position of the inlays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call