Abstract

Organic contaminated wastes water from petrochemical industries can be removed by adsorbent and photocatalyst. In this work, the degradation rate of phenol have been studied at different ratios of activated carbon/NaA zeolite composite materials coated with TiO2 photocatalyst which are easily to be fabricated into tubular shape by extrusion method. In addition, the foam-inserted composite can be floated on the surface of waste water for the higher phocatalyst activity. While the composite is the low cost adsorbent with high absorption and high ion exchange properties. In order to optimize the efficiency of material, the various ratios of activated carbon/NaA zeolite (3:1, 1:1 and 1:3) and amount of coated TiO2 on the specimen’s surface was studied by UV/Vis spectrophotometer which related to phenol concentration. Moreover the various amount of phenolic resins (10, 20, 30, 40 and 50 wt%) at different reduction firing temperatures (600 and 650 °C) with soaking time of 1, 2 and 3 hours affected to the compressive strength of samples. For the characterization, XRD is used to characterize the phase and SEM is used to provide the morphology of the prepared composite materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.