Abstract

Laser surface topography has great applications in mechanical, medical, and electrical industries. This paper proposes a mechanism for the shape formation of stainless steel by pulsed laser melting. A 2D axisymmetric finite element model considering the temperature-dependent surface tension is developed, in which the melt flow and free surface deformation are analyzed by using the normal and shear surface forces. The numerical results show that the molten flows toward the place of the greatest surface tension and the free surface deformation are dominated by the shear force (Marangoni effects), generated by the surface tension gradient during heating phase, and the normal stress, generated by the surface tension at the curved surface during the cooling period.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call