Abstract
Cooperative manipulation, where several robots collaboratively transport an object, poses a great challenge in robotics. In order to avoid object deformations in cooperative manipulation, formation rigidity of the robots is desired. This work proposes a novel linear state feedback controller that combines both optimal goal regulation and a relaxed form of the formation rigidity constraint, exploiting an underlying distributed impedance control scheme. Since the presented control design problem is in a biquadratic LQR-like form, we present an iterative design algorithm to compute the controller. As an intermediate result, an approximated state-space model of an interconnected robot system is derived. The controller design approach is evaluated in a full-scale multi-robot experiment.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have