Abstract

AbstractIn this work, the investigators studied etching conditions for generating macro porous silicon with different morphologies in p‐type (111) substrates. Both crystal orientation dependent growth of macropores and electric current direction dependent growth of macropores have been achieved. A superlattice structure, which consists of several layers of macroporous silicon with different morphologies, has been demonstrated by modulating the etch conditions during the anodization process. The morphology superlattice structure is developed for an inlet particle filter of a micro gas chromatograph (µGC). It may offer a number of other new MEMS applications. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call