Abstract
Metal–organic vapor phase epitaxy (MOVPE) is suitable for the growth of superlattice (SL) structures composed of multiple alloy compositions. By taking advantage of this flexibility of MOVPE, we have demonstrated the crystal growth of varying-layer-composition, 4.8μm-emitting, tapered active-region quantum cascade lasers (TA-QCLs), for which the barriers in the active region gradually increase in height from the injection barrier to the exit barrier, resulting, in turn, in a dramatic suppression of carrier leakage. One stage of the TA-QCL structure consists of seven different alloy compositions. The composition and growth rate of each layer are calibrated by using high-resolution X-ray-diffraction rocking curves. Very narrow mid-infrared absorption peaks (∼30meV full width at half-maximum) have been achieved, at room temperature, from 20 periods of In0.6Ga0.4As/Al0.56In0.44As SL structures, at the designed wavelength. Transmission-electron-microscope analysis of the QCL structure confirms extremely accurate thickness control and layer uniformity for layers as thin as 1nm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.