Abstract
We report on the formation process of skyrmion lattice (SkL) domain boundaries in FeGe using Lorentz transmission electron microscopy and small-angle electron diffraction. We observed that grain boundaries and edges play an important role in the formation of SkL domain boundaries; The SkL domain boundary is stabilized at the intersection of two grains. A micromagnetic simulation using the Landau−Lifshitz−Gilbert equation revealed that the SkL domains separated by a boundary represent the lowest energy configuration. Conversely, in a wide area, SkL domain boundaries were not formed and SkL domains with different orientations rotated to form a single SkL domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.