Abstract
Cooking emissions account for a major fraction of urban volatile organic compounds and organic aerosol. Aldehyde species, in particular, are important exposure hazards in indoor residential and occupational environments, and precursors to particulate matter and ozone formation in outdoor air. Formation pathways of aldehydes from oils that lead to their emissions are not well understood. In this work, we investigate the underlying mechanisms involved in the formation of aldehydes from heated cooking oil emissions, through studying how antioxidants and oil composition modulate oxidation chemistry. Our results demonstrate that gaseous emissions are driven by radical-mediated autoxidation reactions in cooking oil, and the composition of cooking oils strongly influences the reaction mechanisms. Antioxidants have a dual effect on aldehyde emissions depending on the rates of radical propagation reactions. We propose a mechanistic framework that can be used to understand and predict cooking emissions under different cooking conditions. Our results highlight the need to understand the rates and mechanisms of autoxidation and other reactions in cooking oils in order to accurately predict the gas- and particle-phase emissions from food cooking in urban atmospheres.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Environmental Science: Processes & Impacts
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.