Abstract

The development of low-cost electrode materials with enhanced activity and favorable durability for hydrogen evolution reactions (HERs) is a great challenge. MoS2 is an effective electrocatalyst with a unique layered structure. In addition, aluminosilica shells can not only provide more hydroxyl groups but also improve the durability of the catalyst as a protective shell. Herein, we have designed a hard-template route to synthesize porous yolk–shell MoS2@void@Aluminosilica microspheres in a NaAlO2 solution. The alkaline solution can directly etch silica (SiO2) hard templates on the surface of MoS2 microspheres and form a porous aluminosilica outer shell. The electrocatalytic results confirm that the MoS2@void@Aluminosilica microspheres exhibit higher electrocatalytic activity for HERs with lower overpotential (104 mV at the current density of −10 mA cm−2) and greater stability than MoS2 microspheres. The superior electrocatalytic activity of MoS2@void@Aluminosilica microspheres is attributed to the unique structure of the yolk@void@shell geometric construction, the protection of the aluminosilica shell, and the greater number of active sites offered by their nanosheet subunits. The design of a unique structure and new protection strategy may set up a new method for preparing other excellent HER electrocatalytic materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call