Abstract

This paper investigates the formation of vibration fields in a mechatronic setup driven by dual induction motors, relying on the controlled synchronization of unbalanced rotors. The proposed algorithm enables precise control over rotor speeds and phase shifts. Experimental results from a multi-resonance vibration laboratory setup demonstrate this approach’s ability to form the vibration fields. The ability to control these fields is crucial for applications such as vibratory transportation and the mixing of bulk materials. The results obtained can ensure a diverse picture of the complex trajectories of motion for various points of the platform, primarily in the screens, making various useful effects for vibration technologies. Additionally, the practical value of this research is that in the case of double synchronous mode the ordinate of the lower point of the trajectory is lower than in the case of single synchronous mode, which improves the efficiency of unloading and prevents congestion formation. The experimental data highlight the practical advantages and potential improvements in efficiency and reliability offered by this method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.