Abstract
The abrupt and reversible semiconductor-metal phase transition in vanadium dioxide nanocrystals has attracted considerable attention for potential applications in oxide electronics, including neuromorphic systems. This study presents a systematic investigation of post-growth annealing conditions for the formation of single VO2 M-phase nanocrystals arrays from VOx films synthesized by atomic layer deposition. The composition of the initial VOx films and the annealing parameters were found to significantly affect the morphology, phase composition and electrical properties of the obtained single nanocrystal arrays. Our results demonstrate that the formation of VO2 M-phase nanocrystal arrays occurs at annealing temperatures of 650 °C and above, irrespective of the initial film composition. More homogeneous in size nanocrystals are formed from initial VOx films with higher V+4 content. The structures with the initial V+4 content of 60 % annealed at 650 °C for 2 h demonstrates the resistive switching with an energy less than 150 fJ, and a total number of stable switching cycles more than 101⁰. Our results pave the way for the novel energy-efficient nanoelectronic and nanophotonic devices based on VO₂ nanoparticles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.