Abstract
Ultra-high temperature ceramics (UHTCs) have become a vital candidate material system for thermal protection systems in aerospace applications. However, high thermal conductivity and high density are the main obstacles to the application of UHTCs. It is a promising solution to prepare porous UHTCs using UHTC hollow microspheres (HMs) as a pore-forming agent. In this work, UHTC (ZrC, TiC, and HfC) HMs are successfully synthesized using carbon hollow microspheres (CHMs) as a template to react with metal powders in molten salt. The diameter of ZrC HMs is about 1 μm and the wall thickness is about 100 nm. The density of each microsphere and the volume fraction of ZrC are 3.36 g/cm3 and 48.42 vol %, respectively. The morphology, microstructure, and phase composition of the obtained ZrC HMs were characterized. The formation mechanism of the UHTC HMs was discussed. Porous ZrC ceramics were prepared using ZrC HMs as a pore-forming agent. The density and thermal conductivity of the porous ZrC ceramics are 3.12 g/cm3 and 1.82 W/(m·K), respectively, which are 53.64 and 91.12% lower than the density and thermal conductivity of dense ZrC ceramics, respectively. The results indicated that ZrC HMs are promising as pore-forming agents or a matrix for lightweight thermal insulation and high-temperature resistance applications in ultra-high temperature environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.