Abstract
Almost all Red Sea deeps contain metal-rich sediments covered by brine pools. It is generally agreed that these metal-rich deposits precipitated from overlying metal-rich brines that originated from migrating hydrothermal fluids. No brine pool has ever been reported in Thetis Deep, inciting us to evaluate if such a brine layer ever occurred in the deep during the past. In order to address that questioning, a study combining mineralogical, geochemical (major-, minor-, rare-earth elements) and isotopic (Sr, Nd, Pb) approaches was completed on cored sediments and extracted interstitial waters from inside and outside the deep. The sediments have an overall hydrothermal origin, as shown by the REE concentrations and patterns, metal contents, and Pb–Nd isotopic data, all pointing to a mantle signature. The intensity of the hydrothermal activity varied with time in the deep; the most intense episode resulting in an almost pure Fe-oxi-hydroxide layer. Varied chemical arguments, especially the Zr and REE data of the sediments, favor the fact that the whole sedimentation in Thetis Deep occurred in the absence of a stable, salt-rich and mineralized brine pool, and that no brine layer ever existed. This conclusion is supported by the constant Sr isotope composition of the sediment and its interstitial waters that are almost identical to that of the Red Sea seawater. The study also suggests that hydrothermal activity monitored fluid supplies that interacted differently with seawater in the different Red Sea deeps, resulting in an overall formation of metal-rich sediments, but along varied local conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.