Abstract
Development of an incompressible turbulent boundary layer with air blowing through a finely perforated flat surface, consisting of a permeable region and impermeable region behind, was studied experimentally. The mass flow rate of injected air Q per an area unit was varied from 0 to 0.2 (kg/s)/m2. Detailed data about the internal structure of the boundary layer in the flow region, characterized by an abrupt change in the flow conditions at the boundary of permeable and impermeable regions, were obtained. A consistent decrease in the local values of skin friction coefficient along a permeable sample and with an increase in the values of Q, reaching 90% at maximal Q, is shown. The role of the flow region behind the zone with an abrupt change in the boundary conditions, essential from the viewpoint of skin friction reduction, is revealed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have