Abstract

The features of the formation of Ta/Ti/Al/Mo/Au ohmic contacts to a Al0.26Ga0.74N/AlN/GaN heterostructure grown on semi-insulating Si(111) substrates are studied. The dependences of the contact resistance on the Al (90, 120, 150, 180 nm) and Ti (15, 30 nm) layer thickness and optimal temperature-time annealing conditions are determined for each studied metallization scheme. It is shown that the minimum achievable contact resistance monotonically increases from 0.43 to 0.58 Ω mm as the Al layer thickness increases from 90 to 180 nm at unchanged Ta, Ti, Mo, Au layer thicknesses. A change in the Ti layer thickness from 15 to 30 nm has no significant effect on the minimum contact resistance. The least contact resistance of 0.4 Ω mm is achieved for Ta/Ti/Al/Mo/Au layers with thicknesses of 10/15/90/40/25 nm, respectively. The optimal annealing temperature for this metallization variant is 825°C at a process duration of 30 s. The grown ohmic contacts have smooth contact-area edges and flat morphology of their surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call