Abstract

Error-free chromosome segregation depends on the precise regulation of phosphorylation to stabilize kinetochore-microtubule attachments (K-fibers) on sister chromatids that have attached to opposite spindle poles (bi-oriented)1. In many instances, phosphorylation correlates with K-fiber destabilization2–7. Consistent with this, multiple kinases, including Aurora B and Plk1, are enriched at kinetochores of mal-oriented chromosomes compared to bi-oriented chromosomes, which have stable attachments2, 8. Paradoxically, however, these kinases also target to prometaphase chromosomes that have not yet established spindle attachments and it is therefore unclear how kinetochore-microtubule interactions can be stabilized when kinase levels are high. Here we show that generation of stable K-fibers depends on the B56-PP2A phosphatase, which is enriched at centromeres/kinetochores of unattached chromosomes. When B56-PP2A is depleted, K-fibers are destabilized and chromosomes fail to align at the spindle equator. Strikingly, B56-PP2A depletion increases the phosphorylation of Aurora B and Plk1 kinetochore substrates as well as Plk1 recruitment to kinetochores. Consistent with increased substrate phosphorylation, we find that chemical inhibition of Aurora or Plk1 restores K-fibers in B56-PP2A depleted cells. Our findings reveal that PP2A, an essential tumor suppressor9, tunes the balance of phosphorylation to promote chromosome-spindle interactions during cell division.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.