Abstract

Initial cluster formation on silicon surfaces in cyclic deep reactive ion etching (c-DRIE) using c-C4F8/SF6 plasma is investigated. These clusters act as a nanomask for the fabrication of nanostructured surfaces such as silicon grass. Different wafer preconditioning regimes and subsequent x-ray photoelectron spectroscopy show that no wafer or process contaminations are the reason for nanomasking in c-DRIE. Furthermore, no Si-containing compounds, such as SiFxOy, SiOx, or SiC, are detected. The clusters consist of residues of the fluorinated carbon layer deposited in c-DRIE. Experimental process analysis using design of experiments shows the dependence of nanomask morphology on passivation time and power. The results indicate that the properties of the nanomask, in particular, density, are determined during passivation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.