Abstract

Formation of shallow source/drain junctions by using HCl-based Si etch followed by selective deposition of in situ heavily B-doped SiGe in a reduced pressure chemical vapor deposition reactor is presented. The etching parameters were optimized to obtain a smooth surface prior to deposition of the SiGe layers. In the epitaxy process, SiGe layers with a resistivity of Ω cm were obtained by tuning the partial pressure of the B and Ge precursors. A problem with selectivity in the epitaxy step was encountered when combing the etch and growth processes, but a practical solution is presented. Integration issues such as loading effect, pile-up, and defect generation have also been investigated. © 2004 The Electrochemical Society. All rights reserved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.