Abstract
The topography evolution using the high energy heavy ion irradiation revealed the fact that ion bombardment produces self-affine nanostructures, creating peculiar surface morphologies and regular structures on the surface of the ZnO thin film at certain fluences. The self-affine nanopatterns produced on the surface of ZnO thin film under swift heavy ion irradiation are different types of nanostructures such as nanodimensional grains aligned like a linear array. Scanning probe microscopy is used for investigating the ZnO surfaces and UV-visible spectroscopy for studying the effect of surface modification on optical properties. The two-dimensional power spectral density of the irradiated ZnO thin films have been evaluated for each image to extract the value of growth factor (β) and roughness exponent (α). The exponent n increases from 2.2 to 4.0 up to a critical value of fluence and beyond which it decreases. These values suggest that ion assisted∕induced diffusion process plays a crucial role in the evolution of self-affine nanostructures on ZnO surface.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have