Abstract
High-burnup Zr-based nuclear fuel claddings exhibit accelerated irradiation growth, corrosion and hydrogen pick-up, all correlated with the emergence of c-component dislocation loops. We made use of sub-nm-resolution atom probe tomography to characterize the nanoscale chemistry of c-loops in fuel cladding from boiling water reactor operation. We found segregation of Fe, Ni and Sn to dislocation lines and depletion of Sn and O inside the loops, resulting in nearly pure Zr islands. We also observed nucleation of suboxide inside one c-loop, pointing to a possible mechanism of accelerated in-reactor corrosion. The Zr islands might also promote hydride precipitation and associated degradation.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have