Abstract
Based on numerical simulation, the influence of the position in the band gap of the Fermi quasilevel of electrons on the dependence of the linear generation rate of interstitial silicon, vacancies, divacancies, and disordering regions in silicon irradiated with electrons is analyzed. From the obtained results it follows that, if the quasi-Fermi level of electrons is located in the upper quarter of the band gap and approaches the bottom of the conduction band, then the linear rate of generation of primary radiation defects created by electrons decreases. Consequently, under nonequilibrium conditions caused by a high level of illumination or the passage of an electric current through the n +-p junction in the forward electric bias mode, as well as in the n+-region of silicon, it is possible to differentially vary the concentration of radiation defects when exposed to electrons. The results obtained can find application in the development of new methods for modifying the properties of semiconductor structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.