Abstract

In this work, formation of porous TiO x layers and theirs corrosion behavior were studied. Application of H 3PO 4 electrolytes results in porous TiO x formation. The process is enhanced by small amount of HF content in the electrolyte. The HF results in higher current density, enhancing dissolution. Small 0.5% HF concentration results in nanopores formation, with pore diameter of about 45 nm. Increase of HF concentration up to 10% results in pores with average diameter of about 5.2 μm. An increase of etching time results in larger pore diameter, but between large 2–5 μm diameter pores smallest ones were observed with diameter below 200 nm. In the initial etching process a remnants of the flat surface are presents with initial cracks in the surface, indicating places for growth of the pores. The TiO x layers can be used as a biomaterial. The corrosion behavior of the layer investigated in Ringer’s solution, revealed an excellent corrosion resistance, with respect to pure Ti.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.