Abstract

In this study, a pn homojunction was intentionally fabricated in the Cu(InGa)Se2 (CIGS) layer by Zn doping. For Zn doping of the CIGS layer, Zn was evaporated after CIGS formation, and a potential improvement in cell performance was confirmed by this technique. Furthermore, Zn diffusion into the CIGS film was investigated by secondary ion mass spectroscopy (SIMS). A conductivity-type conversion from p-type to n-type was studied by the measurement of the cross-sectional electron beam-induced current (junction EBIC: JEBIC) and the spectral response of solar cells. A conversion efficiency of 11.5% has been achieved using the Zn-doped CIGS layer without a buffer layer and by the formation of a pn homojunction in the CIGS absorber.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.