Abstract

The theory discussed in the present paper is a solar nebula-type theory which assumes the initial existence of a big disk-shaped gas cloud in rotational motion around the Sun. At the outer edge of the gas cloud there is a steady loss of angular momentum, which is mainly caused by the diffusion induced by turbulence and shock waves. This leads to the formation of a doughnutshaped gas ring at the edge of the cloud, outside of which there is plasma in a state of partial corotation. The gas ring is then slowly shifted towards the Sun, whereby the grains of solid matter within the gas cloud are also transported and collected within the gas torus. During the contraction process the following two situations arise: First, due to the small amount of friction, the angular momentum of the inner part of the ring rapidly exceeds that of the outer part. Second, the angle between the orbits of the inner and outer part of the gas ring increases gradually. When, during contraction, a certain distance is covered, the gas ring turns over, i.e. there is a sudden interchange of the inner and outer parts of the gas ring, where two adjacent rings of solid matter (jet streams) are formed. Immediately after the turn-over process the speed of contraction is at first drastically reduced, but then the gas ring is shifted once more towards the Sun. This process is then repeated periodically. The planets originate from the outer rings of solid matter, which contain much more matter than their adjacent inner rings. The inclination between the inner and outer rings is roughly 5°. In particular, Mercury, the Moon, Titan as well as Triton result from the innermost rings of matter. Having gone through the formation process, most of the planets acquire a rotating gas disk out of which the regular satellites are also created by the same periodic contraction process (hetegonic principle). This theory is the first that can explain all noteworthy facts about our planetary system and the satellite systems in a qualitative yet conclusive way.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call