Abstract
We report novel morphologies with periodic height modulations of isotactic polystyrene (iPS) crystals, resulting from alternating stacks of correlated lamellae. Systematic experiments were performed on iPS films of several thicknesses (h) for varying degrees of undercooling, ΔT = Tm∞ – TC, where Tm∞ and TC are the equilibrium melting temperature and the crystallization temperature, respectively. We demonstrate that the spatial period (λ), i.e., the mean distance between neighboring stacks of lamellae, exhibits a power-law dependence on h and an exponential dependence on 1/ΔT. We propose that self-induced nucleation of stacked layers caused periodic deviation in the growth rate of iPS crystals, yielding periodic height modulations.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have