Abstract

The ability to promote rapid osseointegration is an important criterion on the titanium implant surface. This performance is greatly determined by the roughness, wettability, and composition of the implant surface. This study aims to investigate the oxide layer formation and wettability on the EDM-titanium implant surface engineered by different micro-finishing methods (i.e. mechanical, physical, and chemical processes). The oxide layer formation was investigated by observing the wt% of oxygen formed while the wettability criterion was studied by determining the contact angle between the liquid and solid surface. The result reveals that the oxide layers formed on the sample surface, excepting Sulfuric acid (H2SO4) 95%-etched, show an interaction with the surface roughness and its wettability. The smoother the surface roughness of the sample, the lower the percentage of the oxide layer and the contact angle formed on the sample surface. In this aspect, the ultrasonic cleaning benchmark has the highest percentage by altering 18.84% of the oxide layer formed by the EDM process while the decrease of 75.89% generated by the H2SO4-etching is the lowest one. On the other hand, the higher the percentage of the oxide layer formation, the lower the wettability of the sample surface. In this aspect, the ultrasonic cleaning benchmark has the lowest wettability with a contact angle of 124º (hydrophilic) while HCl-etching is the lowest with 45º (hydrophobic). The results are notable that the ultrasonic cleaning method is able to alter wt% of the oxygen on the EDM-titanium implant surface, whereas the acid etching method can be recommended as a worthy method of the surface finishing for the semi-permanent type of implant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call