Abstract

It is shown that the SidSi dimers of the reconstructed Si(001) surface can react with the ﷿ bonds of unsaturated organic molecules to produce well-defined organic films with novel physical properties. Scanning tunneling microscopy (STM) studies show that the resulting layers are ordered both translationally and rotationally, with the SidSi dimers acting as a template for extending the translational and rotational order from the silicon substrate to the organic film. STM images and infrared spectroscopy experiments show that by using vicinal Si(001) surface having primarily double-height steps, the rotational order of the molecules can be preserved over macroscopic length scales, leading to measurable anisotropy in optical properties. It is proposed that this chemistry may provide a general method for formation of controlled organic films on Si(001) surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.